Gönderen Konu: Dağılım {çözüldü}  (Okunma sayısı 5617 defa)

Çevrimdışı MATSEVER 27

  • Geo-Maniac
  • ********
  • İleti: 738
  • Karma: +10/-6
Dağılım {çözüldü}
« : Haziran 17, 2016, 10:58:30 ös »
$23$ adet özdeş top $1,2,3,\cdots,23$ numaralı $23$ kutuya tek numaralı kutuda en çok $1$ top bulunacak biçimde kaç farklı şekilde dağıtılabilir?
« Son Düzenleme: Ağustos 21, 2019, 06:17:34 ös Gönderen: scarface »
Vatan uğrunda ölen varsa vatandır.

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.716
  • Karma: +23/-0
  • İstanbul
Ynt: Dağılım
« Yanıtla #1 : Ağustos 21, 2019, 06:22:55 ös »
Çözüm 1:

$i$ numaralı kutuya $x_i$ tane top koymuş olalım. $x_1+x_2+x_3+ \cdots_ + x_{23}=23$ denkleminin negatif olmayan tamsayılardaki çözüm sayısı $\dbinom{45}{22}$ olur. Tek numaralı kutular $12$ tanedir. $x_1, x_3, \dots , x_{23}\leq 1 $ olması isteniyor.

$x_1 \geq 2 $ istenmeyen durumdur. Bunun için $x_1={x_1}^\prime + 2 $ değişken değiştirmesi yapılırsa ${x_1}^\prime +x_2+x_3+ \cdots_ + x_{23}=21$ olup çözüm sayısı $\dbinom{43}{22}$ olur. Benzer istenmeyen durumları $x_3 \geq 2$, $x_5 \geq 2$, ... , $x_{23} \geq 2$ için yaparsak toplam $\dbinom{12}{1} \dbinom{43}{22}$ tane istenmeyen durum oluşur.

Şimdi de hem $x_1 \geq 2 $ hem de $x_3 \geq 2 $ gibi istenmeyen durumların ikişerli olarak aynı anda sağlanma sayılarına bakalım. ${x_1}^\prime +x_2+{x_1}^\prime + \cdots_ + x_{23}=19$ denkleminin çözüm sayısı $\dbinom{41}{22}$ olur. Bu $x_1$, $x_3$ ikililerinin seçim sayısı $\dbinom{12}{2}$ olduğundan toplam $\dbinom{12}{2} \dbinom{41}{22}$ tane arakesit durumu vardır.
...
Bu şekilde devam edilirse, içerme dışarma prensibiyle istenen durumların sayısı

$ \dbinom{45}{22} - \dbinom{12}{1} \dbinom{43}{22} + \dbinom{12}{2} \dbinom{41}{22} - \dbinom{12}{3} \dbinom{39}{22} + \dbinom{12}{4} \dbinom{37}{22} - \dbinom{12}{5} \dbinom{35}{22} + \\ \dbinom{12}{6} \dbinom{33}{22} - \dbinom{12}{7} \dbinom{31}{22} + \dbinom{12}{8} \dbinom{29}{22}  - \dbinom{12}{9} \dbinom{27}{22} + \dbinom{12}{10} \dbinom{25}{22} - \dbinom{12}{11} \dbinom{23}{22}$

elde edilir.

Bu ifadeyi toplam sembolüyle ile kısaca $$ \sum_{n=0}^{11} (-1)^n\dbinom{12}{n}\dbinom{45-2n}{22}$$

biçiminde yazabiliriz.
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.716
  • Karma: +23/-0
  • İstanbul
Ynt: Dağılım {çözüldü}
« Yanıtla #2 : Ağustos 21, 2019, 06:28:24 ös »
Çözüm 2:

Tek numaralı $12$ tane kutudan $n$ tanesini seçelim ve bunlara birer top bırakalım. Geriye $23-n$ top kalır ve bunları da çift numaralı kutulara dağıtalım. $x_2+x_4+\cdots +x_{22}= 23-n$ denkleminin negatif olmayan tamsayılardaki çözüm sayısı $\dbinom{33-n}{10}$ olur. Çarpma prensibiyle $\dbinom{12}{n}\dbinom{33-n}{10}$ tane durum elde edilir. Bunları da $n=0,1,\dots, 12$ için toplarsak tüm durumların sayısı
$$ \sum_{n=0}^{12}\dbinom{12}{n}\dbinom{33-n}{10}$$

olarak hesaplanır.
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal