Gönderen Konu: halkanın asal ideali  (Okunma sayısı 6765 defa)

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.717
  • Karma: +23/-0
  • İstanbul
halkanın asal ideali
« : Ağustos 24, 2015, 02:10:33 öö »
Soru (L. Gökçe):

Aşağıdakilerden hangisi $ \left( \mathbb Z, +, \cdot \right) $ halkasının bir asal idealidir?

$
\textbf{a)}\ \{ 0 \}
\qquad\textbf{b)}\ \mathbb Z
\qquad\textbf{c)}\ 4\mathbb Z
\qquad\textbf{d)}\ 3\mathbb Z \cap 6\mathbb Z
\qquad\textbf{e)}\ 15\mathbb Z
$

Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı alpercay

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 970
  • Karma: +14/-0
Ynt: halkanın asal ideali
« Yanıtla #1 : Ağustos 24, 2015, 03:09:27 ös »
Yanıt: $\boxed{A}$

Önce asal idealin tanımını verelim:

Asal İdeal: $H$ değişmeli halkasının bir öz ideali $R$ olsun. Yani $R$, $H$ dan farklı olsun. Eğer $x,y \in H$ ve $xy \in R$ iken daima $x \in R$ veya $y\in R$ oluyorsa $R$ ye $H$ nın bir asal ideali denir.

Bu tanıma göre $R=\{ 0 \}$ nin bir asal ideal olduğu anlaşılır. Ayrıca tanımdan ispatlanabilecek bir teorem şu şekildedir:

Teorem: $n>1$ olmak üzere  $n\mathbb Z$ idealinin $\mathbb Z$ nin asal ideali olması için $\iff$  $n$ asal olmalıdır.

Örneğin, $3\mathbb Z \cap 6\mathbb Z =6\mathbb Z$ olduğundan asal ideal değildir.
« Son Düzenleme: Ağustos 25, 2015, 12:02:54 öö Gönderen: scarface »

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal