Gönderen Konu: Tümleme Prensibi ve De Morgan Problemleri  (Okunma sayısı 9491 defa)

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.716
  • Karma: +23/-0
  • İstanbul
Tümleme Prensibi ve De Morgan Problemleri
« : Ağustos 11, 2012, 11:35:49 öö »
Sonlu matematiğin en önemli ve temel formüllerinden olan Tümleme Prensibi ve De Morgan Kuralları ile ilgili bir çalışma kağıdı hazırladık. Tümleme Prensibi ve De Morgan Kuralları'nın diğer sonlu matematik prensipleriyle beraber kullanıldığı birçok problem kurulabilir. Beğenerek okuyacağınız bir yazı olduğunu ümit ediyoruz, Kolay gelsin  :) ...
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.716
  • Karma: +23/-0
  • İstanbul
Ynt: Tümleme Prensibi ve De Morgan Problemleri
« Yanıtla #1 : Eylül 04, 2022, 01:14:03 ös »
Dokümanın word belgesini kaybettiğim için şu anda belge içinde düzeltme veremiyorum. Belgeyi güncelleme şansımız olursa yapacağımız düzeltmeler şunlar olacaktır:

$\color{red}\bullet$ Problem 2'de $m+k \geq n$ olmalıdır. Sehven $m\geq n+k$ yazmışım.

$\color{red}\bullet$ Problem 5'te $s(A\cap B) = \dfrac{5!}{3!}=20$ olmalıdır. Sehven $s(A\cap B) = \dfrac{5!}{2!}=60$ yazmışım. Böylece doğru yanıt $s(\overline{A}\cup \overline{B}) = 105-30-60+20=35$ olacaktır.

$\color{red}\bullet$ Problem 6'da $s(A\cap B) = \dfrac{5!}{3!}=20$ olmalıdır. Böylece doğru yanıt $s(\overline{A}\cup \overline{B}) = 105-20=85$ olmalıdır. Problem 5'teki hatamı kopyaladığım için sehven $s(\overline{A}\cup \overline{B}) = 105-60=45$ yazmışım.

$\color{red}\bullet$ Problem 10-b'de yanıt $2^{18} - 12\cdot 3^8$ olmalıdır. Sehven  $2^{18} - 12\cdot 3^9$ yazmışım.

$\color{red}\bullet$ Alıştırma 5-b'de yanıt $4^{n} - (n+3)\cdot 3^{n-1}$ olmalıdır. Sehven  $4^{n} - (n+1)\cdot 3^{n}$ yazmışım.

$\color{red}\bullet$ Alıştırma 5-c'de $0\leq k < n$ olmalıdır. Sehven $0\leq k \leq n $ yazmışım. Yanıt olarak verilen $\dbinom{n}{k+1}3^{n-k-1} + \dbinom{n}{k+2}3^{n-k-2} +\cdots + \dbinom{n}{n}3^{0} $ doğru olup alternatif olarak $4^n - \left[\dbinom{n}{0}3^{n} +  \dbinom{n}{1}3^{n-1} + \cdots + \dbinom{n}{k}3^{n-k} \right]$ yazılışı da verilebilir.



Okurları bu düzeltmeler hakkında bilgilendirmiş olalım. İyi çalışmalar.
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal