Genelleştirilmiş Radon Eşitsizliği'ni kullanacağız
$$LHS=\sum_{cyc- i}{\dfrac{x_i^k}{x_{i+1}+x_{i+2}+\cdots+x_{i-1}}}=\sum_{cyc- i}{\dfrac{x_i^{k+1}}{x_i\left(x_1+x_2+\cdots+x_n\right)-x_i^2}}\overbrace{\geq}^{G. Radon} \dfrac{\left(\sum\limits_{cyc}{x_1^2}\right)^{\dfrac{k+1}{2}}}{n^{\dfrac{k-3}{2}}\left(\left(\sum\limits_{cyc}{x_1}\right)^2-\sum\limits_{cyc}{x_1^2}\right)}$$
$$=\dfrac{\lambda^{\dfrac{k+1}{2}}}{n^{\dfrac{k-3}{2}}\left(\left(\sum\limits_{cyc}{x_1}\right)^2-\lambda\right)}$$
Şimdi Kuvvet Ortalaması veya Cauchy kullanarak
$$\left(\sum\limits_{cyc}{x_1}\right)^2\leq n\sum\limits_{cyc}{x_1^2}=\lambda n$$
$$LHS\geq \dfrac{\lambda^{\dfrac{k+1}{2}}}{n^{\dfrac{k-3}{2}}\left(\left(\sum\limits_{cyc}{x_1}\right)^2-\lambda\right)}\geq \dfrac{\lambda^{\dfrac{k+1}{2}}}{n^{\dfrac{k-3}{2}}.\lambda\left(n-1\right)}=\dfrac{1}{n-1}\sqrt{\dfrac{\lambda ^{k-1}}{n^{k-3}}}$$
elde eder ve ispatı tamamlarız.