Genelleştirme 1
$a,b,c$ pozitif gerçel sayılar olmak üzere $abc=1$ , $a+b+c=p$ , ve
$$\left(\lambda ab+\theta a+\theta b-\theta p +\beta\right)\left(\lambda bc+\theta b+\theta c-\theta p +\beta\right)\left(\lambda ca+\theta c+\theta a-\theta p +\beta\right)\geq 0$$
koşulları sağlanıyorsa
$$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\geq \dfrac{p\left(\beta+\sqrt{\beta^2+4\theta\lambda}\right)}{2\theta}+\dfrac{2\theta}{\beta+\sqrt{\beta^2+4\theta\lambda}}-\left(\dfrac{\beta+\sqrt{\beta^2+4\theta\lambda}}{2\theta}\right)^2$$
olduğunu gösteriniz.