Yanıt: $\boxed{B}$
Çözüm: $\infty^{0}$ belirsizliği vardır. $ \displaystyle{ y= \lim_{x\to 0^{-}} \left(x-\dfrac{1}{x}\right)^x} $ dersek $\ln y = \displaystyle{ \lim_{x\to 0^{-}} x \cdot \ln \left (x-\dfrac{1}{x}\right) = \lim_{x\to 0^{-}} \dfrac{\ln \left (x-\dfrac{1}{x}\right)}{\dfrac{1}{x}} }$ biçimindeki $\dfrac{\infty}{\infty}$ belirsizliğine dönüşür. L'hospital kuralını uygularsak,
$$ \ln y = \displaystyle{ \lim_{x\to 0^{-}} \dfrac{ \dfrac{1+\dfrac{1}{x^2} }{x-\dfrac{1}{x}}}{-\dfrac{1}{x^2}} } = \lim_{x\to 0^{-}} \dfrac{x(x^2 + 1)}{1-x^2} = 0 $$
olup $\ln y = 0 \implies y =e^0 = 1$ sonucuna ulaşılır.