Yanıt: $\boxed{E}$
I. Verilen ifade Lagrange Teoremi'nin ifadesi olup doğrudur.
II. $a$ nın mertebesi $n$ olsun. $a$ tarafından üretilen alt grubu $\left<a\right>$ ile gösterirsek $\left<a\right>=\{ a, a^2,a^3,\dots, a^n = e \}$ dir. $\left|\left<a\right>\right|=n$ olup Lagrange Teoremi gereğince $n$, $|G|$ yi tam böler. ($e \in G$ ile birim elemanı gösteriyoruz.)
III. $|G|=p$ asal sayı olsun. Madde II'ye göre bir $a \neq e$ için $|\left<a\right>|$ mertebesi $p$ yi bölmelidir. Buradan $|\left<a\right>|=1$ veya $|\left<a\right>|=p$ olur. Ancak $a \neq e$ seçtiğimizden $|\left<a\right>|=p$ dir. Üstelik $|G|=p$ olduğundan $G=\left<a \right>$ dir. $G$ bir tek $a$ elemanı yardımıyla üretilebildiğinden, devirli gruptur.