$\pi = 3$ durumunda küpün içinden küre çıkarıldıktan sonra su seviyesi küpün yarısındadır. Bu aşamada küpün içine silindir yerleştirilirse, silindirin hacmi, küpün hacminin $\frac34$ ü kadar olduğundan $\frac14$ oranında su taşar. Dolayısıyla $B$ birim küp su koyamıyoruz. Problemde küpün içinde küre çıkarıldıktan sonra içindeki suyun da boşaltıldığı verilmelidir. Buna göre çözelim.
Yanıt: $\boxed{E}$
$A=8r^3-\frac43\pi r^3 = 4r^3$ olur. Silindiri küpün tabanına oturacak biçimde yerleştirirsek boşta kalan taban alanı, karenin tabanının $\frac14$ ü kadardır. Böylece $B=2r^3$ birim su eklenir. $\dfrac{A}{B}=2$ dir.
Şimdi $2$ birim ayrıt uzunluğuna sahip bir küpün bir cisim köşegeni üstünde $X,Y,Z$ noktalarını alalım. $M$ köşesi bu cisim köşegeni üstünde değilse, diğer altı köşeden hangisi olarak seçilirse seçilsin $|MX|+|MY|+|MZ|$ sabit olarak gelir. $Y$ noktasının küpün merkezi olduğunu varsayabiliriz. Cisim köşegeni uzunluğu $2\sqrt3$ olduğundan $|MY|=\sqrt3$ tür. $|MX|=\dfrac{\sqrt{11}}{2}$ ve $|MZ|=\dfrac{3\sqrt{3}}{2}$ olarak hesaplanır. $|MX|+|MY|+|MZ|=\dfrac{5\sqrt{3}+\sqrt{11}}{2}$ olur.