Yanıt: $\boxed {C}$
$f\left( x,y,z\right) =z-x^{2}+xy-y^{3}$
$f_{x}\left( x,y,z\right) =-2x+y \Rightarrow f_{x}\left( 1,1,1\right) =-1$
$f_{y}\left( x,y,z\right) =x-3y^2 \Rightarrow f_{y}\left( 1,1,1\right) =-2$
$f_{z}\left( x,y,z\right) =1\Rightarrow f_{z}\left( 1,1,1\right) =1$ olur. Teğet düzleminin denklemi
$f_{x}\left( 1,1,1\right) \cdot \left( x-1\right) +f_{y}\left( 1,1,1\right) \cdot \left( y-1\right) +f_{z}\left( 1,1,1\right) \cdot \left( z-1\right) =0$
$\Rightarrow -x+1-2y+2+z-1=0$
$\Rightarrow x+2y-z=2$ dir.