$W$ uzayının oluşturduğu düzlemin normal vektörü $\overrightarrow {N}= (2, -3, 4)$ tür. $W$ nin bir boyutlu alt uzayları, $W$ nin içinde olan ve orijinden geçen doğrulardır. $W$ nin sıfır boyutlu alt uzayı da $\overrightarrow {0}= (0, 0, 0)$ sıfır vektörüdür. Aradığımız alt uzaydan (doğrulardan) birinin doğrultman vektörü $\overrightarrow {P}= (a, b, c)$ olsun. $\overrightarrow {P} \perp \overrightarrow {N}$ olmalıdır. Bu ise vektörlerin iç çarpımlarının $0$'a eşit olmasını gerektirir. Dolayısıyla $ \overrightarrow {P} \cdot \overrightarrow {N} = 2a -3b + 4c =0$ bağıntısı sağlanmalıdır.
$(a)$ seçeneğinde $\overrightarrow {P}= (2, -1, 2)$ olup $ \overrightarrow {P} \cdot \overrightarrow {N} = 4 + 3 + 8 \neq 0$ dır.