Gönderen Konu: Tübitak Lise 2. Aşama 2009 Soru 1  (Okunma sayısı 4394 defa)

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2.633
  • Karma: +9/-0
Tübitak Lise 2. Aşama 2009 Soru 1
« : Ağustos 06, 2013, 03:42:50 öö »
$p^{3}-4p+9$ un tam kare olmasını sağlayan tüm $p$ asal sayılarını bulunuz.

(Okan Tekman)
« Son Düzenleme: Kasım 13, 2013, 01:37:57 ös Gönderen: geo »

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2.633
  • Karma: +9/-0
Ynt: Tübitak Lise 2. Aşama 2009 Soru 1 - Tashih edildi
« Yanıtla #1 : Ağustos 11, 2013, 09:41:58 öö »
(Eren DURLANIK)

Cevap: $p=2,\ 7,\ 11$ değerleri için $p^3-4p+9=\ 3^2,\ {18}^2,\ {36}^2$ olarak bulunur.

$x^2=p^3-4p+9$  denklemini  $p$  asalı ve $x\in {{\mathbb N}}_0$ için çözeceğiz.

$p=2$  ise $x=3$  sağlıyor, yani $p=2$  çözümdür. $p\ne 2$  durumuna bakmak yeterlidir.

$x^2\equiv 9 \pmod p$  olduğundan; bir $k$ tam sayısı için $x=kp-3$  veya $x=kp+3$  olmalıdır.

$x=kp-3$  ise; ${(kp-3)}^2=p^3-4p+9\Rightarrow k^2p-6k=p^2-4\Rightarrow p|6k-4$  olmalıdır. $p\ne 2$ olduğundan, $p|3k-2$  olmalıdır. Yani $p\le 3k+2$ olmalıdır.

$x=kp+3$  ise; ${(kp+3)}^2=p^3-4p+9\Rightarrow k^2p+6k=p^2-4\Rightarrow p|6k+4$  olmalıdır. $p\ne 2$  ise $p|3k+2$  olmalıdır. Yani $p\le 3k+2$ olmalıdır.

İki durumda da  $p\le 3k+2$  olmalıdır. Öyleyse $\dfrac{p-2}{3}\le k\Longrightarrow \dfrac{p^2-2p-9}{3}\le kp-3\le x$ .

Şimdi $x$ üzerinden iki durum inceleyelim:

i)  $x\le \dfrac{p^2}{4}\Rightarrow \dfrac{p^2-2p-9}{3}\le \dfrac{p^2}{4}\Rightarrow p\le 8+\dfrac{36}{p}\Rightarrow p\le 11$ ;

ii) $x>\dfrac{p^2}{4}\Rightarrow x^2=p^3-4p+9$  olduğundan $\dfrac{p^4}{16}<p^3-4p+9\Rightarrow p<16-\dfrac{16(4p-9)}{p^3}\Rightarrow p\le 13$.

Demek ki $p\le 13$ olmalıdır, bu şartı sağlayan asallarda incelenirse yalnızca  $7$  ve $11$  in sağladığı görülür. Yani, tüm çözümler $p=2,\ 7,\ 11$  olarak bulunur.
« Son Düzenleme: Ocak 04, 2015, 01:05:05 ös Gönderen: geo »

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2.633
  • Karma: +9/-0
Ynt: 1
« Yanıtla #2 : Ağustos 11, 2013, 09:53:21 öö »
(Burak VARICI)

$p=2$ için $p^{3} -4p+9=9$ tamkaredir. $p=3$ için $p^{3} -4p+9=24$ ifadesi tamkare değildir. Dolayısıyla $p\ge 5$ varsayalım. $p^{3} -4p+9=a^{2} $ olsun. İfadeyi

$\bmod 6$ da incelersek $p^{3} -4p+9\equiv -3p+9\equiv 0$ sağlanır, dolayısıyla $a=6b{\rm \; }(b\in {\mathbb N})$ buluruz.

Böylece $(p-2)p(p+2)=9(2b-1)(2b+1)$ elde edilir. $p$ için iki durum mümkündür:

i) $p=9k+2$ ise, yerine yazarsak $9k(9k+2)(9k+4)=9(2b-1)(2b+1)$

a) $2b=pm+1$ ise  $k(9k+4)=m(9km+2m+2)$ olur.

$\pmod{ p=9k+2}$ de incelersek   $2k\equiv 2m \pmod p$ buluruz.

$p>k\ge m$ olduğundan $k=m$ dir.

$9k+4=9k^{2} +2k+2{\rm \; \; }\to {\rm \; }9k^{2} -7k-2=(9k+2)(k-1)=0$  Dolayısıyla ilk durumdan $k=1$  ve  $\underline{p=11}$ elde edilir. Yerine koyarsak,  gerçekten de $11^{3} -4.11+9=1296=36^{2} $ sağlanır.

b) $2b=pm-1$ ise $k(9k+4)=m(9km+2m-2)$

$\pmod {p=9k+2}$de incelersek  $2k\equiv -2m\pmod p\Rightarrow {\rm \; }9k+2\le k+m{\rm \; \; \; }m\ge 8k+2.$ Çelişki!(Neden Çelişki?) Bu durumda çözüm yoktur.

ii) $p=9k-2$ ise $9k(9k-2)(9k-4)=9(2b-1)(2b+1)$ Yine iki durum vardır:

a) $2b=pm+1$ ise  $k(9k-4)=m(9km-2m+2)$ sağlanır/bulunur.

$\pmod{p=9k-2}$ de incelersek  $-2k\equiv 2m\pmod p\Rightarrow {\rm \; }9k-2\le k+m{\rm \; \; \; }m\ge 8k-2.$ Bu durumda eşitlik sağlanmaz, çelişki! Bu durumda çözüm yoktur.

b) $2b=pm-1$ ise $k(9k-4)=m(9km-2m-2)$ olur. İfadeyi

$\pmod{p=9k-2}$ de incelersek $-2k\equiv -2m\pmod p\Rightarrow m=k$. ($m=k$ geçişini nasıl yaptın? $m<p$?)

$9k-4=9k^{2} -2k-2{\rm \; \; }\Rightarrow {\rm \; (}9k-2)(k-1)=0$

Dolayısıyla $k=1$ ve $\underline{p=7}$, bulunur.

Sonuç olarak, $p^{3} -4p+9{\rm \; }$ ifadesini tamkare yapan $p$ asalları $2$, $7$ ve $11$'dir. $\triangleright $
« Son Düzenleme: Nisan 23, 2016, 12:02:47 ös Gönderen: geo »

Çevrimdışı efecan

  • G.O Yeni Üye
  • *
  • İleti: 5
  • Karma: +0/-0
Ynt: 1
« Yanıtla #3 : Ağustos 19, 2013, 05:31:06 ös »
Her iki çözüm de tashih edilmiştir.

Düzeltme:

2. Çözümde:
m<=k olması i)-b) nin başındaki verilen eşitlikte açıktır. Dolayısıyla m>=8k+2 çelişki verir.
Kırmızı ile belirtilen yerde de m>k olduğu takdirde ii)-b) de verilen eşitlikte sol taraf sağ taraftan büyük olur. Dolayısıyla k>=m olmalıdır ve p modundaki denklik de bu durumda m=k yı verir.
« Son Düzenleme: Nisan 23, 2016, 12:02:50 ös Gönderen: geo »
- Müsbet anlamda "Carpe Diem" -

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal