Gönderen Konu: Tübitak Lise 2. Aşama 2007 Soru 4  (Okunma sayısı 3647 defa)

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2.633
  • Karma: +9/-0
Tübitak Lise 2. Aşama 2007 Soru 4
« : Ağustos 06, 2013, 03:40:19 öö »
$k>1$ bir sayı, $p=6k+1$ bir asal sayı ve $m=2^{p}-1$ olmak üzere, $$\dfrac{2^{m-1}-1}{127m}$$ sayısının bir tam sayı olduğunu gösteriniz.

(Şahin Emrah)
« Son Düzenleme: Mayıs 01, 2016, 08:33:45 ös Gönderen: Eray »

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2.633
  • Karma: +9/-0
Ynt: 4 - Tashih edildi
« Yanıtla #1 : Ağustos 11, 2013, 09:20:36 öö »
(Mathematist)

$k>1$ olduğundan $p\ne 7$ öncelikle $128\equiv 2^{7} \equiv 1 \pmod {127}$ olduğundan $der_{127} 2=7$ olduğunu söyleyebiliriz. Diğer taraftan $127$ bir asal sayıdır ve dolayısıyla:
$$(127,m)>1\Leftrightarrow 127|m\Leftrightarrow 127|2^{p} -1\Leftrightarrow 2^{p} \equiv 1 \pmod {127}\Leftrightarrow 7|p$$
bulunur ki bu $p>7$ olduğundan mümkün değil.

$\Rightarrow (127,m)=1$. Dolayısıyla ayrı ayrı $m|2^{m-1} -1$ ve $127|2^{m-1} -1$ olduğunu ispatlamamız yeterlidir.

$127|2^{m-1} -1\Leftrightarrow 2^{m-1} \equiv 1 \pmod {127} \Leftrightarrow 7|m-1\Leftrightarrow 7|2^{0} -2\Leftrightarrow 2^{p-1} \equiv 1 \pmod 7$ bulunur. Diğer taraftan $2^{6} \equiv 1 \pmod 7$ ve $6|p-1$ olduğundan $2^{p-1} \equiv 1 \pmod 7$ ve de $127|2^{m-1} -1$ doğrudur.

Ayrıca $m=2^{p} -1|2^{m-1} -1$ olduğunu ispatlamak için, $p|m-1$ olduğunu göstermek yeterlidir, çünkü böylece $m-1=pt$ olur ve $2^{m-1} -1=(2^{p} -1)(2^{p.(t-1)} +2^{p.(t-2)} +\dots+1)$ şeklinde yazılabilir.

Diğer taraftan $2^{p} \equiv 2 \pmod p \Leftrightarrow m\equiv 2^{p-1} \equiv 1 \pmod p$ denkliği Küçük Fermat Teoremi'nden sağlanır, ispat biter.
« Son Düzenleme: Eylül 15, 2013, 10:18:57 öö Gönderen: bosbeles »

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal