Aritmetik-geometrik ortalamalar eşitsizliğinden,
$$a+b+b+b\ge 4\sqrt[4]{ab^3}, $$ $$b+c+c+c+c\ge 5\sqrt[5]{bc^4}, $$ $$c+a+a\ge 3\sqrt[3]{ca^2}$$ 'dir. Taraf tarafa çarparsak,
$$\left(a+3b\right)\left(b+4c\right)\left(c+2a\right)\ge 60a^{\frac{1}{4}}b^{\frac{3}{4}}b^{\frac{1}{5}}c^{\frac{4}{5}}c^{\frac{1}{3}}a^{\frac{2}{3}}=60a^{\frac{11}{12}}b^{\frac{19}{20}}c^{\frac{17}{15}}=60abc\frac{c^{\frac{2}{15}}}{a^{\frac{1}{12}}b^{\frac{1}{20}}}$$ $$=60abc\dfrac{c^{\frac{1}{12}}}{a^{\frac{1}{12}}}\frac{c^{\frac{1}{20}}}{b^{\frac{1}{20}}}\ge 60abc\left(1\right)\left(1\right)=60abc. $$