(Lokman GÖKÇE)
$Q$ nun $AB$ üzerindeki izdüşümü $E$, $CD$ üzerideki izdüşümü $F$; $P$ nin $AB$ üzerindeki izdüşümü $G$, $CD$ üzerindeki izdüşümü $H$ olsun. $AE=DF=a$, $EM=b$, $MG=c$, $BG=HC=d$ olsun.
$\dfrac{DF}{EM}=\dfrac{FN}{AE}\Rightarrow \dfrac{a}{b}=\dfrac{FN}{a}\Rightarrow FN=\dfrac{a^2}{b}$ ve $\dfrac{HC}{MG}=\dfrac{NH}{BG}\Rightarrow \dfrac{d}{c}=\dfrac{NH}{d}\Rightarrow NH=\dfrac{d^2}{c}$ olur. Buradan da $EG=FH\Rightarrow b+c=\dfrac{a^2}{b}+\dfrac{d^2}{c}$ elde edilir. Cauchy-Schwarz eşitsizliğinden
$${\left(a+d\right)}^2={\left(\dfrac{a}{\sqrt{b}}\cdot \sqrt{b}+\dfrac{d}{\sqrt{c}}\cdot \sqrt{c}\right)}^2\le \left(\dfrac{a^2}{b}+\dfrac{d^2}{c}\right)\left(b+c\right)={\left(b+c\right)}^2\Rightarrow a+d\le b+c\ $$ $$\Rightarrow a+d+b+c\le 2\left(b+c\right)\Rightarrow 1\le b+c\le PQ$$