Gönderen Konu: Uluslararası Matematik Olimpiyatı 1990 Soru 3  (Okunma sayısı 3938 defa)

Çevrimdışı ERhan ERdoğan

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1424
  • Karma: +12/-0
Uluslararası Matematik Olimpiyatı 1990 Soru 3
« : Haziran 05, 2014, 11:25:03 ös »
$$\dfrac{2^n+1}{n^2}$$ ifadesinin tam sayı olmasını sağlayan tüm $n>1$ tam sayılarını bulunuz.

Çevrimdışı Arman

  • G.O Sevecen Üye
  • ****
  • İleti: 52
  • Karma: +2/-0
Ynt: Uluslararası Matematik Olimpiyatı 1990 Soru 3
« Yanıtla #1 : Ekim 25, 2016, 07:46:49 ös »
$n|2^n+1 \Longrightarrow 2^n\equiv-1\pmod{n}\Longrightarrow2^{2n}\equiv1\pmod{n}$

$n$ sayısının en küçük asal bölenine $p_1$ diyelim

$2^{2n}\equiv1\pmod{p_1}$ ve $2^{p_1-1}\equiv1\pmod{p_1}$

$2$ sayısının$\pmod{p_1}$'deki mertebesi $d$ olsun. O zaman $d|(p_1-1,2n)$ ,

$(p_1-1,2n)$ ifadesi $(p_1-1,n)=1$ olduğundan $1$ veya $2$ olabilir.

$d|1,2$ olduğundan $d=1,2$ olabilir. $d=1$ olursa $n=1$ gelir. O yüzden

$d=2$ olur ve buradan $2^{2}\equiv1\pmod{p_1}$ olduğundan $p_1=3$ olur.

$n=3^x.y$ diyelim. Buradan $3^{2x}|2^n+1$ gelir.

$v_3(3^{2x})\le v_3(3)+v_3(n)$

$2x\le1+x\Longrightarrow x\le1\Longrightarrow x=1$

Demekki $x=3.y$ ve $(y,3)=1$

Buradan $y|2^{3y}+1\Longrightarrow 2^{3y}\equiv-1\pmod{y}$

$2^{6y}\equiv-1\pmod{y}$ , $y$ sayısının en küçük asal bölenine $p_2$ diyelim.

$2^{6y}\equiv-1\pmod{p_2}$ ve $2^{p_2-1}\equiv-1\pmod{p_2}$

$2$ sayısının$\pmod{p_2}$'deki mertebesi $f$ olsun.O zaman $f|(p_2-1,6y)$

$(p_2-1,6y)$ ifadesi $(p_2-1,y)=1$ olduğundan$1,2,3$ veya $6$ olabilir.Durumları inceleyelim:

$1)$ $(p_2-1,6y)=1\Longrightarrow f=1\Longrightarrow 2^1\equiv1\pmod{p_2}$ olamayacığından

$n$'nin başka asal böleni yoktur. Buradan $n=3$ çözümü gelir.

$2)$ $(p_2-1,6y)=2 \Longrightarrow f=2$($f=1$ durumunu daha önce incelemiştik)

$2^2\equiv4\equiv1\pmod{p_2}$ Buradan ancak $p_2=3$ gelir ancak bu durum $(y,3)=1$ ile çelişir.

Demekki bu durumdan çözüm gelmez.

$3)$ $(p_2-1,6y)=3 \Longrightarrow f=3 \Longrightarrow 2^3\equiv8\equiv1\pmod{p_2}$

Buradan $p_2=7$ gelir ancak $2^{3y}+1\equiv 8^y+1 \equiv 2 \pmod{7}$ olduğundan

$7|2^{3y}+1$ koşulu sağlanmaz.

$4)$ $(p_2-1,6y)=6 \Longrightarrow f=6 \Longrightarrow 2^6\equiv64\equiv1\pmod{p_2}$

Buradan $p_2=3,7$ durumları gelir ancak bu durumlardan daha önce çözüm gelmediğini görmüştük.

Demekki sağlayan tek durum  $n=3$
« Son Düzenleme: Ocak 28, 2023, 07:59:59 ös Gönderen: geo »

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal