$A=\dfrac13 + \dfrac15 + \dfrac17 + \cdots + \dfrac{1}{97} + \dfrac{1}{99}$
$B=1 + \dfrac15 + \dfrac17 + \cdots + \dfrac{1}{99} + \dfrac{1}{101}$
$C=1 + \dfrac13 + \dfrac15 + \cdots + \dfrac{1}{97} + \dfrac{1}{99}$
$D=\dfrac15 + \dfrac17 + \dfrac19 + \cdots + \dfrac{1}{99} + \dfrac{1}{101}$
olduğuna göre, $A \cdot B - C \cdot D$ değerini hesaplayınız.
$\textbf{a)}\ \dfrac{98}{101} \qquad\textbf{b)}\ \dfrac{99}{101} \qquad\textbf{c)}\ \dfrac{98}{303} \qquad\textbf{d)}\ \dfrac{100}{303} \qquad\textbf{e)}\ \dfrac{100}{101}$