Cevap: $\boxed{C}$
Polinomun başkatsayısı $1$ olduğundan köklerinin tamsayı olması için gerekli ve yeterli şart diskriminantın tamkare olmasıdır. Bunun yanında köklerin pozitif olduğunu çıkartabilmemiz için köklerin toplamı ve çarpımının pozitif olması gerekir. Yani Vieta formüllerinden $-a>0$ ve $-(4a+1)>0$ olmalıdır. Buradan $a<-\frac{1}{4}$ olması gerektiği bulunur. Yani diskriminantın tamkare olduğu negatif tamsayı $a$'ları bulmamız gerekiyor. $$\Delta=a^2+4(4a+1)=a^2+16a+4=(a+8)^2-60$$ olduğundan $t\geq 0$ için $$(a+8)^2-60=t^2\implies (a+8-t)(a+8+t)=60$$ bulunur. $a+8-t$ ve $a+8+t$'nin pariteleri aynı olduğundan ikisi de çifttir ve $a+8+t>a+8-t$'dir. Dolayısıyla, $$(a+8+t,a+8-t)=(30,2),(10,6),(-6,-10),(-2,-30)$$ olabilir. Bu ikililerden, $a=8,0,-16,-24$ değerleri bulunur. $a<0$ olmasını istediğimizden $a=-16$ veya $a=-24$'dür. Bu değerlerin toplamı $-40$ olacaktır.