Gönderen Konu: 2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 16  (Okunma sayısı 447 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.562
  • Karma: +4/-0
2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 16
« : Haziran 17, 2024, 01:23:20 ös »
$x,y \in \mathbb R$ olmak üzere, $x^2+y^2=\dfrac32$ ise $x+y-xy$ değeri en fazla kaç olabilir?

$\textbf{a)}\ \dfrac34  \qquad\textbf{b)}\ \dfrac12  \qquad\textbf{c)}\ \dfrac32  \qquad\textbf{d)}\ \dfrac54  \qquad\textbf{e)}\ \dfrac94$

Çevrimdışı diktendik

  • G.O Bağımlı Üye
  • *****
  • İleti: 122
  • Karma: +0/-0
Ynt: 2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 16
« Yanıtla #1 : Haziran 17, 2024, 04:10:59 ös »
Yanıt: $\boxed{D}$

İlk denklemde ifadeyi $(x+y)^2=\frac{3}{2}+2xy$ olarak yazabiliriz. Buradan $x+y=u$ dersek $xy=\frac{2u^2-3}{4}$ olarak bulunur. Soruda bizden maximumu istenen ifade $u-\frac{2u^2-3}{4}$ olur. Türev alıp sıfıra eşitlersek $u=1$ elde edilir. İfade başkatsayısı negatif $2.$ dereceden denklem olduğundan bu değer için maximum elde edilir. $u-\frac{2u^2-3}{4}$ ifadesinde yerine koyarsak $\frac{5}{4}$ değeri elde edilir. $x+y=1$ ve $x^2+y^2=\frac{3}{2}$ denkleminin reel çözümleri vardır.

Not:
Türev almak yerinde $\frac{-2u^2+4u+3}{4}$ parabolünün tepe noktasının $x=1$ apsisli nokta olması kullanılabilir.
« Son Düzenleme: Haziran 17, 2024, 08:53:01 ös Gönderen: diktendik »

Çevrimdışı Hüseyin Yiğit EMEKÇİ

  • Geo-Maniac
  • ********
  • İleti: 795
  • Karma: +2/-0
Ynt: 2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 16
« Yanıtla #2 : Haziran 17, 2024, 06:35:27 ös »
$x+y=u$ olmak üzere $u$'lu ifadenin maksimumu ($u\geq 2,u\leq 0$ durumlarında ifadenin maksimum olmayacağı açıktır.) AGO ile de
$$\dfrac{4u-2u^2+3}{4}=\dfrac{2u\left(2-u\right)+3}{4}\overbrace{\leq}^{AGO} \dfrac{2+3}{4}=\dfrac{5}{4}$$
şeklinde rahatlıkla elde edilebilirdi ve eşitlik durumu $u=2-u\Longleftrightarrow u=1$ iken sağlanır. Kaan arkadaşımızın da dediği gibi $x+y=1$ ve $x^2+y^2=\dfrac{3}{2}$ eşitliklerinin reel çözümlerinin bulunup bulunmaması çözümün bütünlüğü için önemlidir.
« Son Düzenleme: Haziran 17, 2024, 10:53:44 ös Gönderen: Hüseyin Yiğit EMEKÇİ »
''Uzman, çok dar bir alanda yapılabilecek tüm hataları yapmış kişidir.''   ~Niels Bohr

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal