Gönderen Konu: 2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 19  (Okunma sayısı 348 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.562
  • Karma: +4/-0
2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 19
« : Haziran 17, 2024, 12:58:08 ös »
Pascal yamuğunda her satırdaki sayı bir üst satırdaki komşu iki sayının toplanmasıyla elde edilir.



Pascal yamuğunu aşağıya doğru doldurmaya devam edersek, hangi satırındaki ardışık üç sayı sırasıyla $2,3$ ve $4$ ile orantılı olur? Örneğin, sırasıyla $2,3,2$ ile orantılı ardışık üç eleman dördüncü satırdadır : $4,6,4$.

$\textbf{a)}\ 42  \qquad\textbf{b)}\ 36  \qquad\textbf{c)}\ 34  \qquad\textbf{d)}\ 43  \qquad\textbf{e)}\ 44$

Çevrimdışı diktendik

  • G.O Bağımlı Üye
  • *****
  • İleti: 122
  • Karma: +0/-0
Ynt: 2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 19
« Yanıtla #1 : Haziran 17, 2024, 01:29:48 ös »
Yanıt : $\boxed{C}$

Cevap $x-1$ olsun. Klasik Pascal üçgeninin $x.$ satırı üzerinde çalışıyoruz. $n,n+1$ ve $n+2.$ Sıradaki terimler $2,3,4$ ile orantılı olsun. $$\frac{\binom{x}{n}}{\binom{x}{n+1}}=\frac{2}{3} \hspace{2mm} \text{ve} \hspace{2mm} \frac{n}{x-n}=\frac{2}{3}$$ elde edilir. Benzer şekilde $$\frac{n+1}{x-n-1}=\frac{3}{4}$$ olur. İki ifadeye $1$ ekleyip taraf tarafa oranlarsak. $$\frac{20}{21}=\frac{x-n-1}{x-n} \hspace{2mm} \text{ve} \hspace{2mm} x-n=21$$ elde edilir. $\frac{n}{x-n}=\frac{2}{3}$ denkleminde $x-n=21$ yazarsak $n=14$ elde edilir. Buradan $x=35$ ve cevap $34$ bulunur.
« Son Düzenleme: Haziran 22, 2024, 05:46:39 ös Gönderen: diktendik »

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal