Gönderen Konu: 2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 23  (Okunma sayısı 359 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.562
  • Karma: +4/-0
2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 23
« : Haziran 16, 2024, 11:36:34 ös »
$f(a,b)=a+b+ab$ şeklinde tanımlanıyor. Buna göre,

$f \left( \dfrac12, f \left( \dfrac13, f \left( \dfrac14, f \left( \dfrac15, f \left( \dfrac16, f \left( \dfrac17, \dfrac18 \right) \right) \right) \right) \right) \right)$

değeri kaça eşittir?

$\textbf{a)}\ \dfrac92  \qquad\textbf{b)}\ 3  \qquad\textbf{c)}\ \dfrac72  \qquad\textbf{d)}\ \dfrac52  \qquad\textbf{e)}\ \dfrac32$

Çevrimdışı Metin Can Aydemir

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1.322
  • Karma: +9/-0
Ynt: 2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 23
« Yanıtla #1 : Haziran 17, 2024, 05:39:49 öö »
Cevap: $\boxed{C}$

Gösterim kolaylığı olması açısından $f(a,b)=a\star b$ olarak yazalım. Bu işlem simetriktir, yani $a\star b=b\star a=(a+1)(b+1)-1$'dir. Ayrıca, $$(a\star b)\star c=(a+1)(b+1)(c+1)-1=a\star (b\star c)$$ olduğundan birleşme özelliği de vardır. Bizden istenen ise $$\frac{1}{2}\star\frac{1}{3}\star\frac{1}{4}\star\frac{1}{5}\star\frac{1}{6}\star\frac{1}{7}\star\frac{1}{8}=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{6}\right)\left(1+\frac{1}{7}\right)\left(1+\frac{1}{8}\right)-1$$ $$=\frac{3}{2}\cdot \frac{4}{3}\cdot \frac{5}{4}\cdot \frac{6}{5}\cdot \frac{7}{6}\cdot \frac{8}{7}\cdot \frac{9}{8}-1=\frac{9}{2}-1=\frac{7}{2}$$ bulunur.
Gerçek hikayeler aslında söylenmeyenlerdir.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal