Gönderen Konu: 2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 24  (Okunma sayısı 438 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.562
  • Karma: +4/-0
2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 24
« : Haziran 16, 2024, 11:28:26 ös »
$|AB|=2|BC|$ olan $ABCD$ dikdörtgeninin iç kısmına $AB$ ve $BC$ çaplı yarım çemberler çizilmiştir. Çemberler $B$'den farklı bir $F$ noktasında kesişmektedir. $F$ noktasının $DC$ kenarına olan uzaklığı $3 \ cm$ olduğuna göre, $ABCD$ dikdörtgeninin alanı kaç $cm^2$ dir?

$\textbf{a)}\ 180  \qquad\textbf{b)}\ 210  \qquad\textbf{c)}\ 450  \qquad\textbf{d)}\ 360  \qquad\textbf{e)}\ 270$

Çevrimdışı diktendik

  • G.O Bağımlı Üye
  • *****
  • İleti: 122
  • Karma: +0/-0
Ynt: 2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 24
« Yanıtla #1 : Haziran 17, 2024, 11:43:27 öö »
Yanıt : $\boxed{C}$

Çapı gören çevre açıların $90^\circ$ olmasından $D,F,B$ doğrusaldır. $F$'den $AD$'ye inen dikme ayağı $X$ olsun. $|DX|=3$'tür.  $\triangle {DXF} \sim \triangle {DAB}$ benzerliğinden $|FX|=6$ ve $AFD$ üçgeninde öklitten $|AX|=12$'dir. $|AD|=15$ ve $|AB|=30$ olduğundan alan $450$ olur.
« Son Düzenleme: Haziran 17, 2024, 05:31:05 ös Gönderen: diktendik »

Çevrimdışı Hüseyin Yiğit EMEKÇİ

  • Geo-Maniac
  • ********
  • İleti: 795
  • Karma: +2/-0
Ynt: 2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 24
« Yanıtla #2 : Ekim 18, 2024, 12:53:23 öö »
Yanıt: $\boxed{C}$

$F$  noktasının sırasıyla $AB$  ve $BC$  üzerine izdüşümü $P$  ve $Q$  noktaları olsun. $FQ=x$  için Öklit Bağıntısından $BQ=x^2/3$  ve $AP=x^3/9$  olur. $AB=2\cdot BC$  ise
$$\dfrac{x^3}{9}+x=2\left(\dfrac{x^2}{3}+3\right)\Longleftrightarrow x=6$$
belirlenir. Dolayısıyla $[ABCD]=x\left(\dfrac{x^2}{9}+1\right)\left(\dfrac{x^2}{3}+3\right)=450$  olur.
''Uzman, çok dar bir alanda yapılabilecek tüm hataları yapmış kişidir.''   ~Niels Bohr

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal