Gönderen Konu: 2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 25  (Okunma sayısı 351 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.562
  • Karma: +4/-0
2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 25
« : Haziran 16, 2024, 11:22:57 ös »
$a_1,a_2,a_3,...,a_{100}$ pozitif tam sayılardan oluşan bir aritmetik dizidir.

       $a_1+a_2+a_3+a_4+a_5+a_6+a_7=133$

$a_{a_1}+a_{a_2}+a_{a_3}+a_{a_4}+a_{a_5}+a_{a_6}+a_{a_7}=553$

olduğuna göre $a_{100}$ kaçtır?

$\textbf{a)}\ 210  \qquad\textbf{b)}\ 403  \qquad\textbf{c)}\ 440  \qquad\textbf{d)}\ 506  \qquad\textbf{e)}\ 434$

Çevrimdışı Metin Can Aydemir

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1.338
  • Karma: +9/-0
Ynt: 2024 Antalya Matematik Olimpiyatı 10. Sınıf Soru 25
« Yanıtla #1 : Haziran 17, 2024, 05:49:37 öö »
Cevap:$\boxed{B}$

$(a_i)$ bir aritmetik dizi olduğundan her $n$ için $a_n=(n-1)d+a_1$ olacak şekilde bir sabit $d$ vardır. Dolayısıyla, $$a_1+a_2+a_3+a_4+a_5+a_6+a_7=7a_1+21d=133\implies a_1+3d=19$$ bulunur. İkinci toplam için $a_{a_n}=(a_n-1)d+a_1=((n-1)d+a_1-1)d+a_1=(n-1)d^2+a_1(d+1)-d$ olacağından $$\sum_{k=1}^{7}a_{a_k}=\sum_{k=1}^{7}\left[(k-1)d^2+a_1(d+1)-d\right]=21d^2+7a_1(d+1)-7d=553$$ $$\implies 3d^2+a_1(d+1)-d=79$$ bulunur. Son bulduğumuz eşitlikte $a_1=19-3d$ yazarsak, $$3d^2+(19-3d)(d+1)-d=79\implies 15(d-4)=0\implies d=4$$ bulunur ve $a_1=19-3d=7$ elde edilir.

Bizden istenen ise $a_{100}=99d+a_1=403$'dür.
Gerçek hikayeler aslında söylenmeyenlerdir.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal