Cevap: $\boxed{E}$
$a+b=c$ eşitliğinde teklik-çiftliğe bakarsak, en az bir sayının çift olması gerektiğini görürüz. $c>2$ olduğundan $a=2$ veya $b=2$'dir.
$a=2$ ise $c=b+2$ ve ifade $$(c-2)(b-4)-73=b^2-4b-73=(b-2)^2-69 = t^2$$ olur. Yani $69=(b-2-t)(b-2+t)$ olur. $69=1\cdot 69$, $3\cdot 23$ olabilir. Bu ihtimallerden $b=37$ ve $b=15$ bulunur ancak $15$ ve $c=39$ asal olmadığından çözüm gelmez.
$b=2$ ise $c=a+2$ ve ifade $$2(-a)-37a+1=-39a+1<0$$ olur ve tamkare olamaz. Çözüm yoktur.