Gönderen Konu: 2007 Antalya Matematik Olimpiyatı Soru 07  (Okunma sayısı 1967 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.611
  • Karma: +4/-0
2007 Antalya Matematik Olimpiyatı Soru 07
« : Ağustos 08, 2022, 02:51:35 ös »


Şekilde, bir doğruya teğet olan üç çember birbirine dıştan teğettir. Büyük çemberlerin yarıçapları $4$ ve $9$ birim olduğuna göre, küçük çemberin yarıçapı kaç birimdir?

$\textbf{a)}\ \dfrac{3}{2}  \qquad\textbf{b)}\ \dfrac{18}{11}  \qquad\textbf{c)}\ \dfrac{18}{13}  \qquad\textbf{d)}\ \dfrac{12}{7}  \qquad\textbf{e)}\ \dfrac{36}{25}$

Çevrimdışı Lokman Gökçe

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 3.752
  • Karma: +24/-0
  • İstanbul
Ynt: 2007 Antalya Matematik Olimpiyatı Soru 07
« Yanıtla #1 : Ağustos 09, 2022, 04:41:58 ös »
Yanıt: $\boxed{E}$

Şekildeki gibi çemberlerin merkezlerine $A, B, C$ diyelim. Büyük çemberlerin ortak dış teğetinin değme noktaları $G$ ve $F$ dir. Ayrıca $C$ den $AG$ ve $BF$ ye inilen dikme ayakları sırasıyla $D, E$ olsun. $|AB|=9+4=13$ tür. $5,12,13$ özel dik üçgenini kullanarak $|GF|=|DE|=12$ olduğunu bulmak kolaydır. Ya da kolayca ispatlanabilen $|GF|=2\sqrt{|AG|\cdot |BF|}$ özelliğinden $|GF|=12$ olduğu yine bulunabilir.
En küçük çemberin yarıçapı $x$ olsun. En büyük çemberin yarıçapı $R$, ortanca çemberin yarıçapı da $r$ diyelim. $x$ in $R$ ve $r$ türünden eşitini genel halde bulalım. Bu halde $|GF|=|DE|=2\sqrt{Rr}$ dir. $|AC|=R+x$, $|BC|=r+x$, $|AD|=R-x$, $|BE|=r-x$ tir. $|DC|^2=(R+x)^2 - (R-x)^2 = 4Rx$ ve $|CE|^2 = 4rx$ olur. $|DE|=|DC| + |CE| = 2\sqrt{Rx} + 2\sqrt{rx}$  olup

$$  \sqrt{Rr} = \sqrt{Rx} + \sqrt{rx}$$

eşitliğine ulaşılır. Buradan $$\dfrac{1}{\sqrt{x}} = \dfrac{1}{\sqrt{R}} + \dfrac{1}{\sqrt{r}} $$

şeklinde şık bir bağıntı da elde ederiz. Burada $R=9$, $r=4$ yazarsak $x = \dfrac{36}{25}$ elde ederiz.
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal