Cevap: $\boxed{E}$
$y=0$ ise $2\leq |x|\leq 9$ olduğundan $x\in\{\pm 2,\pm 3,\dots, \pm 9\}$ olmak üzere $16$ ikili bulunur.
$y\neq 0$ ise $|x|+|3y|>2$ olduğundan soruda verilen alt sınırın bir önemi yoktur. $$3|y|\leq |x|+|3y|\leq 9\implies |y|=1,2,3\implies y=\pm 1,\pm 2,\pm 3$$ olabilir.
$y=\pm 1$ ise $ |x|\leq 6$ olduğundan $x\in\{0,\pm 1,\pm 2,\dots, \pm 6\}$ olmak üzere $13\cdot 2=26$ çözüm bulunur.
$y=\pm 2$ ise $|x|\leq 3$ olacaktır. $x$'in alabileceği değerler $0,\pm 1,\pm 2,\pm 3$ olur. $14$ çözüm bulunur.
$y=\pm 3$ ise $x=0$ olmak zorundadır. Buradan da $2$ çözüm bulunur. Toplam $2+14+26+16=58$ tane tamsayı ikilisi vardır.