Gönderen Konu: 2000 Antalya Matematik Olimpiyatı Lise 2-3 Soru 09  (Okunma sayısı 1493 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.562
  • Karma: +4/-0
2000 Antalya Matematik Olimpiyatı Lise 2-3 Soru 09
« : Mayıs 20, 2022, 03:43:19 öö »
$a_1=1$ ve her $n \geq 1$ için $a_{n+1}=\dfrac1n (1+2a_1+3a_2+...+(n+1)a_n)$ ile tanımlanan dizinin $2000$'inci terimi aşağıdakilerden hangisidir?

$\textbf{a)}\ 3 \cdot 2^{1998}  \qquad\textbf{b)}\ 3 \cdot 2^{1999}  \qquad\textbf{c)}\ 3 \cdot 2^{1997}  \qquad\textbf{d)}\ 3 \cdot 2^{2000}  \qquad\textbf{e)}\ 3 \cdot 2^{2001}$

Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2.633
  • Karma: +9/-0
Ynt: 2000 Antalya Matematik Olimpiyatı Lise 2-3 Soru 09
« Yanıtla #1 : Mayıs 21, 2022, 02:20:51 öö »
Yanıt: $\boxed A$

$n>2$ için,
$a_{n}=\dfrac1{n -1}(1+2a_1+3a_2+...+na_{n-1})$

$(n-1)a_{n}=1+2a_1+3a_2+...+na_{n-1}$

$a_{n+1}=\dfrac1n (1+2a_1+3a_2+...+na_{n-1}+(n+1)a_n)$

$a_{n+1}=\dfrac1n ((n-1)a_n+(n+1)a_n)=2a_n$ elde edilir.

$a_2=3$, $a_3=3\cdot 2$, $a_n = 3\cdot 2^{n-2}$, $a_{2000}=3\cdot 2^{1998}$ elde edilir.


Çevrimdışı geo

  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2.633
  • Karma: +9/-0
Ynt: 2000 Antalya Matematik Olimpiyatı Lise 2-3 Soru 09
« Yanıtla #2 : Mayıs 21, 2022, 04:00:37 ös »
İlk terimleri yazarsak $a_1 =1, a_2=3, a_3 =6, a_4=12$ elde ederiz.
Şıklara bakarsak $a_1 =1$, $a_2=3=3\cdot 2^0$, $a_3 =6=3\cdot 2^1$, $a_4=12=3\cdot 2^2$, $\dots, a_{2000}=3\cdot 2^{1998}$  şeklinde bir tahmin yürütülebilir.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal