Gönderen Konu: 1997 Antalya Matematik Olimpiyatı Soru 07  (Okunma sayısı 1680 defa)

Çevrimdışı matematikolimpiyati

  • Geo-Maniac
  • ********
  • İleti: 1.562
  • Karma: +4/-0
1997 Antalya Matematik Olimpiyatı Soru 07
« : Mayıs 05, 2022, 01:43:32 öö »
$n$ sayısının kaç tane tamsayı değeri için $n^3+3$ sayısı $n^2-n-1$ ile tam bölünür?

$\textbf{a)}\ 5  \qquad\textbf{b)}\ 6  \qquad\textbf{c)}\ 7  \qquad\textbf{d)}\ 8  \qquad\textbf{e)}\ \text{sonsuz}$

Çevrimdışı taftazani44

  • G.O Demirbaş Üye
  • ******
  • İleti: 266
  • Karma: +2/-0
Ynt: 1997 Antalya Matematik Olimpiyatı Soru 07
« Yanıtla #1 : Mayıs 06, 2022, 04:01:57 ös »

$\begin{aligned}n^{3}+3=\left( n+1\right) \left( n^{2}-n-1\right) +2n+4\end{aligned}$
Ayrıca
$2n+4\geq n^{2}-n-1$
Olmalı ve 2n+4, n²-n-1 e bölünebilmeli
n,-1,0,1,2,3,4 değerleri için eşitsizlik sağlanır.
-1,0,1,2,3 değerleri icin 2n+4, n²-n-1 e bölünebilir .
Yani 5 tane olur

nurettin koca

Çevrimdışı Metin Can Aydemir

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1.322
  • Karma: +9/-0
Ynt: 1997 Antalya Matematik Olimpiyatı Soru 07
« Yanıtla #2 : Eylül 10, 2023, 11:43:11 öö »
Cevap: $\boxed{B}$

Bizden $\frac{n^3+3}{n^2-n-1}$ kesirinin tamsayı olması isteniliyor. Bu durumda polinom bölmesi ile $$\frac{n^3+3}{n^2-n-1}=n+1+\frac{2n+4}{n^2-n-1}\in\mathbb{Z}\iff \frac{2n+4}{n^2-n-1}\in\mathbb{Z}$$ elde edilir. $n=-2$ için kesir $0$ olacağından istenilen sağlanır. $n\neq -2$ olması durumunda ise $$|2n+4|\geq |n^2-n-1|$$ elde edilir.

$n<-2$ ise eşitsizlik $-2n-4\geq n^2-n-1$'e yani $$0\geq n^2+n+3\implies 0\geq 4n^2+4n+12=(2n+1)^2+11$$ haline gelir ki buradan çözüm gelmez.

$n>2$ is eşitsizlik $2n+4\geq n^2-n-1$'e yani $$0\geq n^2-3n-5\implies 0\geq 4n^2-12n-20=(2n-3)^2-29$$ haline gelir. Buradan da $$29\geq (2n-3)^2\implies 25\geq (2n-3)^2\implies 5\geq 2n-3\geq -5\implies 4\geq n\geq -1$$ elde edilir. Yani $n=3,4$'ü denemeliyiz. Sadece $n=3$ sağlar.

$-2<n\leq 2$ ise $n=-1,0,1,2$ olabilir. Dört sayı da sağlar. Buradan tüm $n$ tamsayıları $-2,-1,0,1,2,3$ olarak bulunur.
Gerçek hikayeler aslında söylenmeyenlerdir.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal