Gönderen Konu: 2017 Antalya Matematik Olimpiyatı Soru 13  (Okunma sayısı 2197 defa)

Çevrimdışı Metin Can Aydemir

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1.321
  • Karma: +9/-0
2017 Antalya Matematik Olimpiyatı Soru 13
« : Ocak 02, 2020, 02:24:11 ös »
$x\in [-1,3]\backslash \{0\}$ olmak üzere, $$x\left (1+\dfrac{1}{|x|}\right )=y-\dfrac{|y|}{y}$$ denklemini sağlayan $(x,y)$ noktaları içinde, aralarındaki uzaklık en büyük olan iki nokta arasındaki uzaklık aşağıdakilerden hangisidir?

Not: $(a,b)$ ve $(c,d)$ noktaları arasındaki uzaklık, $\sqrt{(a-c)^2+(b-d)^2}$ formülüyle bulunur.

$\textbf{a)}\ 3\sqrt{5} \qquad\textbf{b)}\ 4  \qquad\textbf{c)}\ 4\sqrt{5} \qquad\textbf{d)}\ 5 \qquad\textbf{e)}\ 5\sqrt{5}$
Gerçek hikayeler aslında söylenmeyenlerdir.

Çevrimdışı Metin Can Aydemir

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1.321
  • Karma: +9/-0
Ynt: 2017 Antalya Matematik Olimpiyatı Soru 13
« Yanıtla #1 : Şubat 23, 2023, 04:10:50 ös »
Cevap: $\boxed{C}$

Verilen eşitliği $x$ ve $y$'nin pozitif-negatif olma durumuna göre inceleyelim. $y\neq 0$ olacağını görebiliriz.

$x,y>0$ ise $x+2=y$ olur. Tanım kümesi gereği $x\in (0,3]$ olacaktır.

$x$ ve $y$ farklı işaretli ise $x=y$ olur ama bu da pozitiflik-negatiflik ile çelişir.

$x,y<0$ ise $x-2=y$ olur ve $x\in [-1,0)$ olacaktır.

Birbirine en uzak iki noktanın $(3,5)$ ve $(-1,-3)$ olduğunu kolaylıkla görebiliriz. Bu iki noktanın arasındaki mesafe ise $\sqrt{4^2+8^2}=4\sqrt{5}$ bulunur.
Gerçek hikayeler aslında söylenmeyenlerdir.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal