ABCD kirişler dörtgeni olduğundan ACD açısıda 45 derecedir ve şekle göre EBD ve ECA üçgenleri benzerdir;
\[
\left| {AB} \right| = x\,,\,\,\left| {BD} \right| = y\,\,,\,\left| {AE} \right| = x + y\,\,,\,\,\left| {AC} \right| = k\,\,,\,\,\left| {ED} \right| = 2k\,\,\,ve\,\,\,\left| {DC} \right| = a\,\,\,olsun.\,\,Benzerlikten;
\]
\[
\frac{{2k}}
{{x + y}} = \frac{{2x + y}}
{{2k + a}} = \frac{y}
{k}
\]
\[
\begin{gathered}
2k^2 = xy + y^2 \hfill \\
\hfill \\
4k^2 + 2ka = 2x^2 + 3xy + y^2 \hfill \\
\hfill \\
a = \frac{{(2x - y)(x + y)}}
{{2k}} \hfill \\
\end{gathered}
\]
\[
Ayr\imath ca\,\,çemberde\,\,kuvvetten\,;\,\,\left| {EA} \right| \cdot \left| {EB} \right| = \left| {ED} \right| \cdot \left| {EC} \right|
\]
\[
\begin{gathered}
(x + y)(2x + y) = 2k \cdot (2k + \frac{{(2x - y)(x + y)}}
{{2k}}) \hfill \\
\hfill \\
\left| {ED} \right| = 2k = \sqrt {2y(x + y)} \,\,\,bulunur. \hfill \\
\end{gathered}
\]
\[
EBD\,\,\,üçgenine\,\,\cos \,\,teoremi\,\,uygularsak;
\]
\[
\left| {ED} \right|^2 = \left| {EB} \right|^2 \cdot \left| {BD} \right|^2 - 2\left| {EB} \right| \cdot \left| {BD} \right| \cdot \cos 45^ \circ
\]\[
\begin{gathered}
2y(x + y) = y^2 + 4x^2 + 4xy + y^2 - 2 \cdot y \cdot (2x + y) \cdot \frac{{\sqrt 2 }}
{2} \hfill \\
\hfill \\
4x^2 + (2 - 2\sqrt 2 )xy - y^2 \sqrt 2 = 0 \hfill \\
\hfill \\
(2x + y) \cdot (2x - y\sqrt 2 ) = 0 \hfill \\
\hfill \\
2x = y\sqrt 2 \to \boxed{x\sqrt 2 = y}\,\,\,bulunur. \hfill \\
\end{gathered}
\]
Kenarları tekrar düzenlersek;
\[
\angle BAD = 90^ \circ \,\,\,olduğu\,\,görülür.\,\,\left| {EA} \right| = x\left( {1 + \sqrt 2 } \right)\,\,\,ve\,\,\,\left| {AD} \right| = x\,\,\,olduğundan\,\,üçgenimiz:22.5 - 67.5 - 90\,\,üçgenidir.\,\angle DEB = 22.5\,\,bulunur.
\]
\[
Cevap:\boxed{B\,}
\]