Çözüm [Lokman GÖKÇE]: Verilen bağıntıyı düzenlersek $a_{n+1} - 2 = a_n^2(a_n - 2) $ olup $\dfrac{a_{n+1} - 2}{a_n - 2} = a_n^2 $ yazılır. Şimdi $n$ ye $1$ den $2010$ a kadar değer vererek elde edilen ifadeleri taraf tarafa çarparsak, eşitliğin sol tarafı bir teleskopik çarpım olduğundan $\dfrac{a_{2011} - 2}{a_1 - 2} = a_1^2\cdot a_2^2 \cdots a_{2010}^2$ olur. Bir $x$ tam sayısı için $ a_1^2\cdot a_2^2 \cdots a_{2010}^2 = x^2$ olarak yazılabilir. $a_1=5$ olduğundan $a_{2011} - 2 = 3x^2$ olup
$$a_{2011} + 1 = 3(x^2 + 1)$$
bulunur. $a_{2011} + 1$ sayısının $p=3$ asalına bölündüğü açıktır.
Koşullara uygun başka $p$ asalı olmadığını ispatlamak için çelişki metodunu kullanalım. $p\equiv 3 \pmod{4}$ ve $p\neq 3$ olan bir $p$ asalı için $p\mid (a_{2011} + 1) $ olduğunu kabul edelim. Bu durumda $p\mid 3(x^2 + 1)$ olup $p\neq 3$ olduğundan $p \mid (x^2 + 1)$ dir. Dolayısıyla $x^2 \equiv -1 \pmod{p}$ dir. Fakat kare kalanlar ve Legendre sembolü için temel bir özellik olarak $p\equiv 3 \pmod{4}$ formunda bir asal sayı iken $\left( \dfrac{-1}{p}\right) = -1$ dir. Yani $x^2 \equiv -1 \pmod{p}$ denkliğini sağlayan $x$ tam sayısı yoktur, çelişki! İspatı için
4n+1 Asal bağlantısına bakılabilir. O halde $p\mid (a_{2011} + 1) $ ve $p\equiv 3 \pmod{4}$ koşullarına uygun biricik asal sayı $p=3$ tür.