Her $x\in [0,1]$ için $f^{n}(x)=x$ olacak şekilde bir $n$ pozitif tam sayının bulunmasını olanaklı kılan tüm $f:\lbrack 0,1\rbrack \to \lbrack 0,1\rbrack $ sürekli fonksiyonlarını bulunuz.
($x \in [0,1]$ olmak üzere, $f^{n}(x)$; $f^{1}(x)=f(x)$ ve her $k$ pozitif tam sayısı için $f^{k+1}(x) = f\left(f^{k}(x)\right)$ bağıntıları aracılığıyla tanımlanıyor.)