$r$ yi "orijine olan uzaklık" olarak değil de "yönlü uzaklık" olarak tanımlarsak sorunumuzu çözeriz. Şöyle bir örnek verelim: Diyelim ki noktamız alışık olduğumuz biçimde $(r,30^{\circ})$ olarak verilsin. Başlangıç ışınımız (burada özel olarak bakış doğrultumuz) $x$ ekseni olmak üzere bu noktaya ulaşmak için bir kaç yol izlenebilir. İlk olarak olduğumuz yerde $30^{\circ}$ derece dönüp bakış yönümüz doğrultusunda $r$ birim yürüyebiliriz. İkinci olarak $210^{\circ}$ derece dönüp bakış doğrultumuzun ters istikametinde $r$ birim yürüyebiliriz. Üçüncü olarak saatin tersi yönünde $150^{\circ}$ derece dönüp yine bakış yönümüzün ters istikametinde $r$ birim yürüyebiliriz. Buna göre vardığımız noktanın koordinatları $k\in\mathbb{Z}$ olmak üzere sırasıyla $(r,30^{\circ}+k.360^{\circ}),(-r,-150^{\circ}+k.360^{\circ})$ ve $(-r,210^{\circ}+k.360^{\circ})$ şeklinde ifade edilebilir. Burada $-r$ ile hareketin yön değiştirmesi kastedilmektedir. Sonuç olarak kutupsal koordinatlarda bir noktayı tasvir etmenin en az üç (belki başka yollar da vardır) yolu var gözüküyor.