3
$n$ pozitif bir tamsayı ve $A=\{1,\ldots ,n\}$ olsun. $f:A\to A $ ve $\sigma :A\to A$ gibi iki permütasyon için, eğer $(f \circ\sigma )(1),\ldots,(f \circ \sigma )(k)$ artan ve $(f \circ\sigma )(k),\ldots,(f \circ\sigma )(n)$ azalan bir dizi olacak şekilde bir $k \in A$ var ise, $f,\sigma $ 'ya göre "tek tepeli''dir diyeceğiz. $S_{\sigma }$ ile $\sigma $'ya göre tek tepeli permütasyonların kümesini gösterelim.
$n\ge 4$ ise, $ S_{\sigma }\cap S_{\pi }=\phi $ olacak şekilde $\sigma $ ve $\pi $ permütasyonlarının var olduğunu gösterelim.