1
Hiçbir $n$ doğal sayısı için $\dfrac{21n+4}{14n+3}$ kesrinin sadeleşmeyeceğini gösteriniz.


2
$$\sqrt{(x+\sqrt{2x-1})}+\sqrt{(x-\sqrt{2x-1})}=A$$ denkleminin gerçel köklerini $(a)  A=\sqrt{2} ,  (b)  A=1 , (c)  A=2$ iken bulunuz. (Karekök içerisindeki ifadelerin negatif olmadığını varsayın.)


3
$a,b,c$ gerçel sayılar olmak üzere, $$a\ \cos^{2}x+b\ \cos{x}+c=0$$ denklemi $\cos{x}$ e göre ikinci dereceden bir denklem olsun. $a,b,c$ sayılarını kullanarak kökleri başlangıçtaki denklemle aynı olan $\cos2x$ e göre ikinci dereceden bir denklem oluşturunuz. $a=4 , b=2 , c=-1$ değerleri için $\cos x$ ve $\cos 2x$ türünden olan denklemleri karşılaştırınız.


4
Hipotenüsü $c=\text{Sabit}$, hipotenüse ait kenarortayı da dik kenarlarının geometrik ortalamasına eşit olan dik üçgeni çiziniz.


5
$AB$ doğru parçasının üzerinde bir $M$ hareketli noktası alınıyor. $AMCD$ ve $MBEF$ kareleri, $AB$ ye göre aynı tarafta yer alacak şekilde oluşturuluyor. Bu kareleri çevreleyen $P$ ve $Q$ merkezli çemberler, $M$ haricinde bir $N$ noktasında kesişiyor. $AF$ ile $BC$ doğrularının kesişimi $N'$ ise,
  • $N$ ve $N'$ noktalarının çakıştığını gösteriniz.
  • $MN$ doğrularının $M$ seçiminden bağımsız sabit bir $S$ noktasından geçtiğini gösteriniz.
  • $M$, $A$ ve $B$ arasında değişirken, $PQ$ doğru parçalarının orta noktalarının geometrik yerini bulunuz.


6
$P$ ve $Q$ düzlemleri bir $p$ doğrusu boyunca kesişiyor. Hiçbirisi $p$ üzerinde yer almayan, $P$ düzleminde bir $A$ ve $Q$ düzleminde bir $C$ noktası veriliyor. $AB \parallel CD$ olacak şekilde aynı zamanda teğetler dörtgeni olan $ABCD$ ikizkenar yamuğunu, $B$ ve $D$ sırasıyla $P$ ve $Q$ düzlemlerinde olacak şekilde çiziniz.



Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
SimplePortal 2.3.3 © 2008-2010, SimplePortal