Gönderen Konu: 2007 tübitak olimpiyat sorusu  (Okunma sayısı 3893 defa)

Çevrimdışı semihyagci

  • G.O Bağımlı Üye
  • *****
  • İleti: 102
  • Karma: +0/-0
2007 tübitak olimpiyat sorusu
« : Nisan 22, 2008, 11:23:41 ös »
Bir matematik dersinde öğretmen tahtaya yazdığı soruyu Ali, Betül, Cem, Çağla, Dursun, Emre, Fatma'nın gruplar halinde çözmesini istiyor. Her grup iki veya üç kişiden oluşacaksa, bu yedi öğrenci kaç farklı biçimde gruplara ayrılabilir?


aynı zamanda permütasyon kombinasyonla ilgili verebileceğiniz püf noktaları, paylaşabiliceğiniz bilgiler varsa paylaşırsanız sevinirim.

Çevrimdışı Teknokrat

  • G.O Bağımlı Üye
  • *****
  • İleti: 154
  • Karma: +6/-2
Ynt: 2007 tübitak olimpiyat sorusu
« Yanıtla #1 : Nisan 26, 2008, 10:43:15 ös »
Olimpiyatlık bir çözüm olmadı ama bilmiyorum başka birşey göremedim soruda.  :)

2,2,3 diye gruplanabilir.
O da 7!/(2!.2!.3!)=210 olur.
Yine, yeni, yeniden...

Çevrimdışı sercan

  • G.O Sevecen Üye
  • ****
  • İleti: 68
  • Karma: +0/-0
Ynt: 2007 tübitak olimpiyat sorusu
« Yanıtla #2 : Nisan 27, 2008, 11:24:16 ös »
permütasyondan başlamışken devam edelim tübitak dünkü olimpiyat sorularından biri     sınava girdim   soru : bir kübün yüzeyleri 7 farklı renkle kaç farklı şekilde boyanabilir.      ben cevabı 210 olarak buldum ama doğrumu acaba
ruhta şair olmadan matematikçi olmak mümkün değildir...

Çevrimdışı sercan

  • G.O Sevecen Üye
  • ****
  • İleti: 68
  • Karma: +0/-0
Ynt: 2007 tübitak olimpiyat sorusu
« Yanıtla #3 : Mayıs 02, 2008, 09:10:05 ös »
SORU NUN DOĞRU YANITI 210
ruhta şair olmadan matematikçi olmak mümkün değildir...

Çevrimdışı bunyamin

  • G.O Bağımlı Üye
  • *****
  • İleti: 101
  • Karma: +0/-0
Ynt: 2007 tübitak olimpiyat sorusu
« Yanıtla #4 : Mayıs 03, 2008, 12:00:38 öö »
sorunun doğru cevabı 210 değil 105 olarak verilmiş ve doğrusuda 105 çünkü 2 tane ikişerli grup var bunların sıralamasından dolayı bölü 2! gelecek.

Çevrimdışı svsmumcu26

  • G.O Yeni Üye
  • *
  • İleti: 6
  • Karma: +0/-0
Ynt: 2007 tübitak olimpiyat sorusu
« Yanıtla #5 : Mart 30, 2013, 01:34:49 ös »
Yanıt , 105 tir...

(ABC)(ÇD)(EF)
C(7,3).(C(4,2).C(2,2)/2!)
35.3 = 105 bulunur.

Çevrimdışı math_tomas

  • G.O Yeni Üye
  • *
  • İleti: 7
  • Karma: +0/-0
Ynt: 2007 tübitak olimpiyat sorusu
« Yanıtla #6 : Şubat 06, 2014, 04:25:28 ös »
AYNEN TEKRARLI PERMÜTASYON OLDUGUNDAN BÖLÜ 2 OLUCAK CEVAP=105

Çevrimdışı scarface

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2854
  • Karma: +20/-0
  • İstanbul
Ynt: 2007 tübitak olimpiyat sorusu
« Yanıtla #7 : Şubat 09, 2014, 02:21:01 öö »
2008 Tübitak Lise 1. aşama Problem 12: 7 renk kullanılarak her yüzeyi farklı bir renge boyanmış kaç küp oluşturulabilir?

Bu sorunun cevabı 210 dur.

Çözümü şöyledir:

Önce 7 renk arasından kullanılacak 6 rengi $C(7,6) = 7$ yolla seçelim. Şimdi 6 renkle küpün kaç farklı yolla boyanabileceğini hesaplayalım. Renkler A, B, C, D, E, F olsun. A rengi alt yüze gelmek zorundadır! Eğer öyle değilse de küpü çevirip A rengini alt yüze getiririz. Böylece alt yüzü A rengi ile sabitlemiş olduk. Bu işlem $1$ yolla yapılır! Şimdi A ya paralel olan yüzeyi boyayacağız. Geriye kalan 5 renkten birisiyle boyayabiliriz. $5$ farklı seçim var. Geriye kaldı 4 renk. Bu renklerle yan yüzeyleri boyayacağız. Fakat A renkli kareye dik ve bu karenin merkezinden geçen doğru ertafında küp dönebilmektedir. Bu dönüşler sonucu elde edilen boyamalar birbirinin aynı olacağından 4 yan yüzeyi dairesel permütasyonla $(4-1)!=3!$ yolla boyarız. Çarpma prensibiyle $7 \cdot 5 \cdot 3! = 210$ farklı boyama elde edilebilir.
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
SimplePortal 2.3.3 © 2008-2010, SimplePortal