Gönderen Konu: Tam Değer Fonksiyonu İçeren Bir Denklem  (Okunma sayısı 62 defa)

Çevrimdışı samienes06

  • G.O İlgili Üye
  • **
  • İleti: 17
  • Karma: +1/-0
Tam Değer Fonksiyonu İçeren Bir Denklem
« : Ekim 10, 2019, 11:28:10 ös »
$\left \lfloor x \right \rfloor$ $x$'in tam kısmı olmak üzere

$|x^2-1|^{\left \lfloor x \right \rfloor}+|x^2-2|^{\left \lfloor x \right \rfloor}+|x^2-3|^{\left \lfloor x \right \rfloor}=\tan\left (\dfrac{\pi\left \lfloor x \right \rfloor}{4}\right )+\cot\left (\dfrac{\pi\left \lfloor x \right \rfloor}{4}\right )$ denklemini reel sayılarda çözünüz.
« Son Düzenleme: Ekim 11, 2019, 12:05:01 ös Gönderen: metonster »

Çevrimdışı samienes06

  • G.O İlgili Üye
  • **
  • İleti: 17
  • Karma: +1/-0
Ynt: Tam Değer Fonksiyonu İçeren Bir Denklem
« Yanıtla #1 : Ekim 11, 2019, 04:37:35 ös »
İlk olarak $\tan\left (\dfrac{\pi\left \lfloor x \right \rfloor}{4}\right )+\cot\left (\dfrac{\pi\left \lfloor x \right \rfloor}{4}\right )$ ifadesinin alabileceği değerlere bakalım. $\left \lfloor x \right \rfloor$ sadece tam sayı olabileceğinden $\tan\left (\dfrac{\pi\left \lfloor x \right \rfloor}{4}\right )+\cot\left (\dfrac{\pi\left \lfloor x \right \rfloor}{4}\right )$ birim çemberde $45$ derece aralıklarla döner. Yani alabileceği değerleri $-2$ veya $2$ olarak düşünürüz ama denklemin sol tarafı pozitif olduğundan $2$'ye eşit olmalıdır.

$\tan\left (\dfrac{\pi\left \lfloor x \right \rfloor}{4}\right )+\cot\left (\dfrac{\pi\left \lfloor x \right \rfloor}{4}\right )=2$ ise $k$ tam sayı olmak üzere$\dfrac{\pi\left \lfloor x \right \rfloor}{4}=\dfrac{\pi}{4}+\pi k$ yani $\left \lfloor x \right \rfloor=4k+1$ şeklinde buluruz.

$k=0$ için $|x^2-1|+|x^2-2|+|x^2-3|=2$ denklemini çözelim. Çözümler $-\sqrt2$ veya $\sqrt2$ olur ancak pozitif olan $k=0$ için sağlanır. Ayrıca  $|x^2-1|+|x^2-2|+|x^2-3|$ ifadesi $\sqrt2$'de minimum yani değeri 2 olmalıdır.

$k>0$ için $|x^2-1|^{4k+1}+|x^2-2|^{4k+1}+|x^2-3|^{4k+1} > |x^2-1|+|x^2-2|+|x^2-3|$ yani $|x^2-1|^{4k+1}+|x^2-2|^{4k+1}+|x^2-3|^{4k+1} > 2$ eşitsizliği sağlanmalıdır. $k>0$ için çözüm yoktur.

$k=-1$ için $\dfrac{1}{|x^2-1|}+\dfrac{1}{|x^2-2|}+\dfrac{1}{|x^2-3|} < 2 $ eşitsizliği sağlanır. Çözüm yoktur.

$k<-1$ için $|x^2-1|^{4k+1}+|x^2-2|^{4k+1}+|x^2-3|^{4k+1} < \dfrac{1}{|x^2-1|}+\dfrac{1}{|x^2-2|}+\dfrac{1}{|x^2-3|} < 2$ sağlanır yani bu aralıkta da çözüm yoktur.

Tek çözümümüz $x=\sqrt2$ olur.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
SimplePortal 2.3.3 © 2008-2010, SimplePortal