Gönderen Konu: Tübitak Lise 1. Aşama 2019 Soru 2  (Okunma sayısı 59 defa)

Çevrimdışı AtakanCİCEK

  • G.O Sevecen Üye
  • **
  • İleti: 69
  • Karma: 0
Tübitak Lise 1. Aşama 2019 Soru 2
« : Mayıs 15, 2019, 06:42:42 ös »
$2020^{2019}$ sayısının $27$ ile bölümünden kalan kaçtır?
$\textbf{a)}\ 10 \qquad\textbf{b)}\ 13  \qquad\textbf{c)}\ 16 \qquad\textbf{d)}\ 19 \qquad\textbf{e)}\ 22$
Bir matematik problemine dalıp gitmekten daha büyük mutluluk yoktur.

Çevrimdışı AtakanCİCEK

  • G.O Sevecen Üye
  • **
  • İleti: 69
  • Karma: 0
Ynt: Tübitak Lise 1. Aşama 2019 Soru 2
« Yanıtla #1 : Mayıs 15, 2019, 06:48:46 ös »
Yanıt:$\boxed{A}$

Öncelikle $2020≡22(mod27)$ olduğunu görelim.

Daha sonra $(2020,27)=1$ olduğundan $φ(27)=18$ olarak hesaplayalım.

$2019≡3(mod18)$ olduğundan  $2020^{2019}≡22^3(mod27)$ olarak bulalım.

$22^3≡(-5)^{3}(mod27)≡-125(mod27)≡10(mod27)$ olarak bulunur.
Bir matematik problemine dalıp gitmekten daha büyük mutluluk yoktur.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
SimplePortal 2.3.3 © 2008-2010, SimplePortal