Gönderen Konu: Çembersellik sorusu  (Okunma sayısı 397 defa)

Çevrimdışı AtakanCİCEK

  • G.O Bağımlı Üye
  • ***
  • İleti: 179
  • Karma: +3/-0
  • Matematik evreni anlamamızı sağlar.
Çembersellik sorusu
« : Aralık 12, 2018, 07:14:39 ös »
$H$ noktası $ABC$ üçgeninin diklik merkezidir. $[BC]$ nin  orta noktası $D$ dir. $H$ den geçen bir doğru $[AB]$ ve $[AC]$ yi sırasıyla $F$ ve $E$ de kessin. $\mid AE\mid=\mid AF\mid$ olsun. $[DH$ ışınının $ABC$ nin çevrel merkezini kestiği nokta $P$ ise $A$,$P$,$F$,$E$ noktalarının çembersel olduğunu gösteriniz.
« Son Düzenleme: Aralık 21, 2018, 08:45:49 ös Gönderen: AtakanCİCEK »
Bir matematik problemine dalıp gitmekten daha büyük mutluluk yoktur.

Çevrimdışı AtakanCİCEK

  • G.O Bağımlı Üye
  • ***
  • İleti: 179
  • Karma: +3/-0
  • Matematik evreni anlamamızı sağlar.
Ynt: Çembersellik sorusu
« Yanıtla #1 : Aralık 21, 2018, 08:44:12 ös »
$HD$ ışını üzerinde $|HD|=|DM|$ olacak şekilde bir $M$ noktası alalım.
$BM$,$CM$,$BH$ ve $CH$ yi çizelim.  $D$, $BC$ nin orta noktası olduğundan $BHCM$ bir paralelkenardır ve $m(\widehat{BMC})=m(\widehat{BHC})=180^\circ-m(\widehat{BAC})$ ve $m(\widehat{BMC})+m(\widehat{BAC})=180^\circ$ dir. O halde $M$ noktası $ABC$ üçgeninin çevrel çemberi üzerindedir.
$PB$,$PC$,$PE$,$PF$ çizilirse $|AE|=|AF|$ olduğundan $m(\widehat{BFH})=m(\widehat{CEH})$ dir.$(1)$
$H$; $ABC$ üçgeninin diklik merkezi olduğundan $m(\widehat{HBF})=90^\circ-m(\widehat{BAC})=m(\widehat{HCE})$ olur. $(2)$
$1$ ve $2$ den $BFH∼CEH$ ve buradan $\frac{|BF|}{|CE|}=\frac{|BH|}{|CH|}$ dır.
$BHCM$ paralelkenar olduğundan $|BH|=|CM|$,$|CH|=|BM|$ olmalıdır. O halde :
$\frac{|BF|}{|CE|}=\frac{|CM|}{|BM|}$ bulunur.$(*)$
$D$,$BC$ nin orta noktasıdır. $A(PBM)=A(PCM)$ olup
$\frac{1}{2}|BP|.|BM|.sin(\widehat{MBP})=\frac{1}{2}|CP|.|CM|.sin(\widehat{MCP})$ olmalıdır.
$m(\widehat{MBP})=180^\circ-m(\widehat{MCP})$ olduğundan
$|BP||BM|=|CP|.|CM|$ $(**)$
$(*)$ ve $(**)$ dan dolayı
$\frac{|BF|}{|BP|}=\frac{|CE|}{|CP|}$ dir. $m(PBF)=m(PCE)$ olduğundan $PBF∼PCE$ dir. O halde
$m(\widehat{PFB})=m(\widehat{PEC})$ ve $m(\widehat{PFA})=m(\widehat{PEA})$ olur.
Sonuç olarak $A,P,F,E$ çemberseldir.



NOT: Arkadaşlar geometrik şeklini çizecek vaktim olursa paylaşacağım.Çizebilecek arkadaş olursa şimdiden teşekkürler.
« Son Düzenleme: Ocak 04, 2019, 07:46:12 ös Gönderen: AtakanCİCEK »
Bir matematik problemine dalıp gitmekten daha büyük mutluluk yoktur.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
SimplePortal 2.3.3 © 2008-2010, SimplePortal