Gönderen Konu: Tübitak Ortaokul 2. Aşama 2006 Soru 3  (Okunma sayısı 1014 defa)

Çevrimdışı ERhan ERdoğan

  • G.O Genel Moderator
  • Geo-Maniac
  • ********
  • İleti: 1405
  • Karma: +11/-0
Tübitak Ortaokul 2. Aşama 2006 Soru 3
« : Temmuz 15, 2016, 06:01:04 ös »
$3 \times3$ satranç tahtasının dokuz karesinden her birinde başlangıçta $0$ yazılıdır. Her adımda, ortak bir kenara sahip iki kare seçilerek,
üstlerindeki sayılardan her ikisine birden ya $1$ ya da $-1$ eklenmektedir. Sonlu sayıda adım sonucunda, karelerdeki sayıların hepsini birden $2$ yapmanın mümkün olmadığını gösteriniz.

Çevrimdışı scarface

  • Lokman Gökçe
  • Administrator
  • Geo-Maniac
  • *********
  • İleti: 2876
  • Karma: +20/-0
  • İstanbul
Ynt: Tübitak Ortaokul 2. Aşama 2006 Soru 3
« Yanıtla #1 : Kasım 14, 2019, 04:01:43 ös »
Çözüm (Lokman Gökçe):

$3\times 3$ satranç tahtasının $5$ karesini şekildeki gibi $\times$ sembolü ile işaretleyelim. Her adım sonundaki işaretlenmiş karelerdeki sayıların toplamı $a$, işaretlenmemiş $4$ karedeki sayıların toplamı da $b$ olsun.

$$ \begin{array}{|c|c|} \hline   \times &  & \times  \\ \hline   & \times &    \\ \hline  \times &  & \times \\ \hline \end{array} $$

Başlangıç durumunda tüm karelerde $0$ yazdığı için $a=0$, $b=0$ dır. Her hamlede bir işaretlenmiş kare ve bir de işaretlenmemiş kare seçildiğinden toplamların değeri beraberce $1$'er artar ya da $1$'er azalır. Yani hamle yapılmadan önce toplamların değerlerini $(a,b)$ sıralı ikilisiyle gösterirsek hamle yapıldıktan sonra bu değerler ya $(a+1,b+1)$ ya da $(a-1,b-1)$ olur. Böylece $a-b$ farkının bir değişmez (invaryant) olduğunu görürüz. Başlangıçta bu invaryant $a-b=0$ dır. Bir süre sonra tüm karelerde $2$ bulunacak olsaydı $a=2\cdot 5 = 10$, $b=2\cdot 4 = 8$ olup $a-b=10-8=2$ elde edilirdir. Halbuki $a-b$ farkı daima $0$ olmalıydı. Demek ki tüm karelerdeki sayıları $2$ yapmak mümkün değildir.
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
SimplePortal 2.3.3 © 2008-2010, SimplePortal