Gönderen Konu: çarpanlara ayırma  (Okunma sayısı 1519 defa)

Çevrimdışı okyardemir

  • G.O Sevecen Üye
  • **
  • İleti: 68
  • Karma: 2
çarpanlara ayırma
« : Ağustos 27, 2014, 01:53:35 ös »
.

Çevrimdışı Eray

  • G.O Genel Moderator
  • G.O Demirbaş
  • ******
  • İleti: 318
  • Karma: 5
Ynt: çarpanlara ayırma
« Yanıtla #1 : Ağustos 28, 2014, 11:03:50 öö »
Öncelikle sorunun şıklarının yanlış olduğunu belirtelim. İfadedeki $18a^2 + 32b^2$'nin değeri $16$ dır. Kalan $3a+4b+27ab$ de pozitif değer alabildiğinden cevap şıklarda yoktur. Ancak yine de soruyu çözelim :)

$18a^2 + 27ab + 32b^2 + 3a + 4b = 16 + 3a + 4b + 27ab$

O halde $3a + 4b + 27ab$ ifadesinin en büyük değerini bulmalıyız.

Cauchy - Schwarz Eşitsizliği:

$(9a^2+16b^2)(1+1)\ge(3a+4b)^2 \Longrightarrow 4\ge3a+4b$

Öte yandan,
$(3a-4b)^2\ge0 \Longrightarrow 8 \ge 24ab \Longrightarrow 9\ge27ab$

O halde,
$18a^2 + 27ab + 32b^2 + 3a + 4b = 16 + (3a + 4b) + 27ab \le 16 + 4 + 9 = 29$ bulunur.

Eşitlik durumu $9a^2 = 16b^2$ ve $3a-4b=0$ eşitlikleri sağlandığında, yani $3a=4b$ olduğunda sağlanır. Verilen eşitlikten $a=\dfrac{2}{3}$ ve $b=\dfrac{1}{2}$ olması gerektiği bulunabiliir.

Not: Benzer şekilde başka bir soru TÜBİTAK tarafından 2004 lise matematik olimpiyatı 1. aşamada sorulmuştur: http://geomania.org/forum/2004-161/tubitak-lise-1-asama-2004-soru-28/
« Son Düzenleme: Şubat 11, 2015, 12:36:48 öö Gönderen: Eray »
Matematik bilimlerin sultanıdır
-Carl Friedrich Gauss

Çevrimdışı okyardemir

  • G.O Sevecen Üye
  • **
  • İleti: 68
  • Karma: 2
Ynt: çarpanlara ayırma
« Yanıtla #2 : Ağustos 28, 2014, 12:06:38 ös »
Teşekkür ederim Sayın hocam

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
SimplePortal 2.3.3 © 2008-2010, SimplePortal