Gönderen Konu: Pappus Teoremi  (Okunma sayısı 3800 defa)

Çevrimdışı ERhan ERdoğan

  • G.O Genel Moderator
  • G.O Efsane Üye
  • ******
  • İleti: 1381
  • Karma: 7
Pappus Teoremi
« : Ekim 06, 2014, 03:59:48 ös »
Varsayalım ki, $\{ A, B, C \}$ ve $\{ A' , B' , C' \}$ nokta grupları, farklı iki doğru üzerinde doğrudaş olan altı farklı nokta olsun.O zaman $D = AB' \cap A'B \ ,\ E = AC' \cap A'C$ ve $F = BC' \cap B'C$ noktaları da doğrusaldır.


Çevrimdışı alpercay

  • Administrator
  • G.O Efsane Üye
  • ******
  • İleti: 776
  • Karma: 11
Ynt: Pappus Teoremi
« Yanıtla #1 : Aralık 03, 2014, 08:26:14 ös »
Teoremin Menelaüs Teoremi yardımıyla yapılan bir ispatını görmüştüm. Projektif Geometri yöntemleriyle de ispatı var. Şunu sormak daha ilginç olabilir: D,E ve F noktalarından geçen doğruya "Pappus Doğrusu" denir. Pappus Doğrusu AB ve A'B' doğrularının kesim noktasından ne zaman geçer?

Çevrimdışı ERhan ERdoğan

  • G.O Genel Moderator
  • G.O Efsane Üye
  • ******
  • İleti: 1381
  • Karma: 7
Ynt: Pappus Teoremi
« Yanıtla #2 : Eylül 12, 2015, 02:31:50 öö »
$A'B, B'C, C'A$ doğrularının meydana getirdiği üçgen $PQR$ olsun. Bu üçgende sırasıyla $ADB' , CEA', BFC'$ kesenleri için Menelaus teoremi uygulayalım. $$\dfrac{AR}{AP}\cdot\dfrac{DP}{DQ}\cdot\dfrac{B'Q}{B'R}=1$$ $$\dfrac{CQ}{CR}\cdot\dfrac{ER}{EP}\cdot\dfrac{A'P}{A'Q}=1$$ $$\dfrac{BP}{BQ}\cdot\dfrac{FQ}{FR}\cdot\dfrac{C'R}{C'P}=1$$ Bu üç ifadeyi çarparsak, $$\left (\dfrac{AR}{AP}\cdot\dfrac{CQ}{CR}\cdot\dfrac{BP}{BQ}  \right )\left (\dfrac{B'Q}{B'R}\cdot\dfrac{A'P}{A'Q}\cdot\dfrac{C'R}{C'P}  \right )\left (\dfrac{DP}{DQ}\cdot\dfrac{ER}{EP}\cdot\dfrac{FQ}{FR}  \right )=1$$ olur. Burada ilk iki parantezdeki çarpımlar $1$'e eşittir çünkü $A, B, C$ ve $A', B', C'$ noktaları doğrusaldır. O halde üçüncü parantezdeki ifade de $1$'e eşit olup bu $D, E, F$ noktalarının aynı doğru üzerinde olduğunu gösterir.   


 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
SimplePortal 2.3.3 © 2008-2010, SimplePortal