Gönderen Konu: Avrupa Kızlar Matematik Olimpiyatı 2013 Soru 5  (Okunma sayısı 1157 defa)

Çevrimdışı scarface

  • Lokman Gökçe
  • Administrator
  • G.O Efsane Üye
  • *******
  • İleti: 2644
  • Karma: 16
  • Banana Republic
Avrupa Kızlar Matematik Olimpiyatı 2013 Soru 5
« : Kasım 18, 2014, 11:01:04 ös »
$ABC$ üçgeninin çevrel çemberi $\Omega$ olsun. $\omega$ çemberi, $[AC]$ ve $[BC]$ kenarlarına teğet ve $P$ noktasında da $\Omega$ çemberine içten teğettir. $AB$ doğrusuna paralel olan ve $ABC$ üçgeninin iç bölgesini kesen bir doğru, $\omega$ çemberine $Q$ noktasında teğettir. $m(\widehat{ACP})=m(\widehat{QCB})$ olduğunu kanıtlayınız.
« Son Düzenleme: Kasım 19, 2014, 10:50:12 ös Gönderen: scarface »
Uğraşınca çözebileceğim zorlukta olan soruları çözmeyi severim.

Çevrimdışı ERhan ERdoğan

  • G.O Genel Moderator
  • G.O Efsane Üye
  • ******
  • İleti: 1378
  • Karma: 7
Ynt: Avrupa Kızlar Matematik Olimpiyatı 2013 Soru 5
« Yanıtla #1 : Haziran 29, 2015, 05:03:34 ös »
$\omega$ çemberinin $[AC]$ ve $[BC]$ kenarlarına değme noktalarına sırasıyla $D$ ve $E$ diyelim.$PD$ ve $PE$ nin $\Omega$ çemberini kestiği farklı noktalar sırasıyla $S$ ve $R$ olsun. Bu noktalar sırasıyla $AC$ ve $BC$ yaylarının orta noktalarıdır*.Buna göre $AR$ ve $BS$ doğruları $ABC$ üçgeninin iç açıortayları olup $T$ kesim noktaları iç teğet çemberinin merkezidir.Pascal Teoremi ne göre $D-T-E$ doğrusal noktalardır. $|CD|=|CE|$ olduğundan $CT \perp DE$ dir.Açılar incelendiğinde $|SA|=|ST|=|SC|$ ve $|RB|=|RT|=|RC|$ eşitliklerini görebiliriz.Şimdi $\angle{BAT}=\angle{CAT}=\alpha , \angle{ABT}=\angle{CBT}=\beta$ diyelim. $KL \parallel AB$ verildiğinden $\angle{CKQ}=\angle{CAB}=2\alpha , \angle{CLQ}=\angle{CBA}=2\beta$ ve ayrıca $|KD|=|KQ| , |LE|=|LQ|$ olduğundan $\angle{KDQ}=\alpha , \angle{LEQ}=\beta$ ve $\omega$ çemberinde bu açılarla aynı yayı gören çevre açılar olan $\angle{DEQ}=\alpha , \angle{EDQ}=\beta$ dır. $\angle{BSC}=\angle{BAC}=2\alpha$ ve $|ST|=|SC|$ için $\angle{STC}=90-\alpha \Rightarrow \angle{STD}=\angle{BTE}=\alpha$ olur. Benzer şekilde $\angle{ATD}=\angle{RTE}=\beta$ olacaktır. $RBT,SAT$ ve $CDE$ üçgenleri benzer üçgenlerdir ve $E,D,Q$ noktaları bu üçgenlerdeki eş özellikli noktalardır. O halde $\angle{ACP}=\angle{ARP}=\angle{ASP}=\angle{QCB}$ dir. 



bkz: * ispatı

 


Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
SimplePortal 2.3.3 © 2008-2010, SimplePortal